7// - é’\/"’_?'/(;

- N

ICASE REPORT R
/é;?ﬁj

A LANGUAGE DESIGN FOR VECTOR MACHINES

V. R. Basili
J. C. Knight

Report Number 75-3
February 18, 1975

INSTITUTE FOR COMPUTER APPLICATIONS
IN SCIENCE AND ENGINEERING
Operated by the
UNIVERSITIES SPACE RESEARCH ASSOCIATION
at
NASA's LANGLEY RESEARCH CENTER
Hamp£on, Virginia

(NASA~-CR=-179994) A LANGUAGE DESIGN FORE N89-71118
VECTOR MACHINES [ICASE) 16 p

Unclas
00,61 0210985

A LANGUAGE DESIGN FOR VECTOR MACHINES

V. R. Basili J. C. Knight
Dept. of Computer Science Analysis and Computation Division
University of Maryland NASA Langley Research Center
College Park, MD 20742 Hampton, VA 23665

ABSTRACT

This paper deals with a programming language under development at
NASA's Langley Research Center for the CDC STAR-100. The design goals for
the language are that it be basic in design and able to be extended as deémed
necessary to serve the user community, capable of the expression of efficient
algorithms by forcing the user to make the maximum use of the specialized
hardware design, and easy to implement so that the language and compiler
could be developed with a minimum of effort. The key to the language was in
choosing the basic data types and data structures. Scalars, vectors, and
strings are available data types in the language. Each basic data type has
an associated set of operators which consist primarily of the operations
provided by the hardware. The only data structure in the language is a
restricted form of the array. Only vector and string data types may be stored
in arrays, forcing the user to Qectorize scalar data when it is necessary to
structure it. This permits the most effective use of the machine for entities
such as real arrays since the high level vector machine instructions may be

used to deal with them directly.

This paper is a result of work started under NASA Grant NGR 47-102-001 while
the authors were in residence at ICASE, NASA Langley Research Center.

INTRODUCTION

Vector and paral]e] processing machines offer new problems in the area
of language design. Besides the goal of desiéning the language which is best
suited to the user for his particular application, there is the added problem
of making effective use of the specialized architecture. The relatively high
Tevel nature of the machine plays an important role in the level of the
languages designed for it.

In general, there are three approaches that might be examined for these . :
machines. First, an existing sequentially oriented language, such as FORTRAN,'
may be expanded in an attempt to handle the new vector or parallel capabilities.
Second, a very high level language relative to the new hardware may be designed
or adapted. The third choice is a language which is intentionally influenced
by the characteristics of the hardware in what amounts to a "bottom up" approach
to language design.

This paper deals with the design and motivation for a programming language,
presently called SL/1, under development at NASA's Langley Research Center for
the CDC STAR-100. The design goals for the language are that it be:

1. basic in design. That is, language features were included only if

they were felt to be absolutely necessary,

2. able to be extended as deemed necessary to serve the user community,

3. capable of expressing efficiently executable algorithms by forcing

the user to make maximum use of the specialized hardware design, .

4., easy to implement so that the language and compiler could be developed

with a-minimum of effort.

For these reasons, the level of the language is vector architecture depen-

dent and therefore directed atlthe level of the machine; i.e., the third choice.

DESIGN JUSTIFICATION

Some justifications will be given on why this approach satisfied the
design goals. At the 10Qer level, a sequentially oriented language could be
extended by incorporating some form of vector processing capability. This is
the approach being taken by CDC in the development of their FORTRAN compiler
for the STAR-100. However, these extensions inevitably take on the appearance
of patches to the basic language design and valuable support constructs, such
as appropriate data and control structures, are usually missing. This caﬁ
leave the Tanguage with an inconsistent and cumbersome design.

Certainly, an implementation of FORTRAN, perhaps with extensions, is
needed to allow existing programs to run on the new machine. FORTRAN has the
benefit of being well known and used by the relevant programming community.
However, this familiarity is also a drawback since the user is in the habit
of writing algorithms in FORTRAN which are centered around the manipulation of
scalar quantities. For a machine like the STAR, this is not the appropriate
level of algorithm expression for making best use of the hardware. Recognizing
the equivalence of sequentially written algorithms to a single machine instruc-
tion is impossible in the general case, and is often inefficient in those
special cases that are worth detecting. For example, the following piece of
FORTRAN evaluates a polynomial with a set of coefficients A and for @ set of

argument values X:

LIMIT = N+1
D0 10J = 1,M
VALUE(J) = X(J)*A(1)
D0:10 I = 2,LIMIT
10 - VALUE(J) = (VALUE(J)+A(I)*X(J)

This is equivalent to one machine instruction on the STAR. Recognition of

this fact by special case is quite difficult and costly.

-2-

Thus, the implementation of a compiler for theilanguage is a major effort
since it requires the translation of all of FORTRAN, the new special features,
along with any number of special recognition cases that are to be included.

The choice of a language which is much higher than the level of the machine
is theoretically a better choice. An existing language like SETL [1] could be
chosen, or a new language could be designed. Relative to the design goals,
the very high level nature of the language would most likely eliminate the need
for extensions. It would certainly permit the easy expression of high 1eye1
algorithms theoretically suitable for efficient execution on the machine. The
practical implementation of the optimization techniques is anothér question.

The primary drawback to this high level of language, however, would be
the major design and implementation effort involved. Unless an existing language
like SETL is chosen, the language design effort alone is an extensive research
undertaking. In either case, the implementation of such a language is-beyond
the resources available to the project. In addition, compile time for programs
written in the language would be inordinately high, and there are some strong:
feelings in the user community against programming at so high a level because
of the lack of user control over run time efficiency.

SL/1 is designed at a level that capitalizes on vector architecture, and
corresponds closely to the level of the machine. In designing a language at
the machine level, care must be given to specifying a consistent, easy to use,
reliable language which makes use of the power of the hardware without exposing
the user fo hardware idiosyncrasies. The purpose of this design effort is not
a high level assembly language, but a high level a]éorithmic language that
would provide the user with the appropriate set of data and control structures

for expressing algorithms in a readable and efficiently executable form.

The language design is relatively simple, which makes it easy to extend.
The basic conservative language design was motivated partially by the design
for the base language SIMPL T [2] of the SIMPL family of programming languages
[3]. SL/1 is meant to be a base language for a possible family of languages,
each of which would serve a special application area of the user community.
Each Tanguage could be designed as an extension to the base language and the
compliler built as an extension to the base compiler.

It is difficult to specify a consistent design level for a bi-level (both
scalar and vector instructions) machine like the STAR. However, the spec%fi-v
cation of basic data types and data structures in SL/1 solve both the consis-
tent level problem and the problem of forcing the user into making maximum use
of the machine hardware. Scalars (real, short real, integer, character,...),
vectors (real vector, short real vector, integer vector,...), and strings
(character string, bit string,...) are available data types in the language.
The only data structure in the language is the array, and only vector and string
data types may be stored in arrays. Thus, the user is forced to vectorize
scalar data when it is necessary to structure it. This permits the most effec-
tive use of the machine for entities such as real arrays since the high level

vector machine instructions may be used to deal with them directly.

BASIC DESIGN

Data Types and Operators

The STAR hardware is capable of operating on sgalars, vectors, and strings.
Scalars inc]ude 32- and 64-bit quantities (ostensibly floating point numbers)
with arithmetic, logical, and relational operations. Vectors are of two types:
normal and sparse. Normal vectors consist of a sequence of 32- or 64-bit quan-

tities occupying contiguous storage locations. Sparse vectors are described by a

sequence of nonzero elements and an associated characteristfc vector (bit
pattern). There are sets of high level hardware operations for both of these
vector types. Strings on the STAR are similar to vectors except that they
consist of sequences of_bits or bytes of information for which there is no
scalar equivalent. They also have a set of high level hardware operators
associated with them.

In SL/1, an attempt was made to define data types into a more organized
and complete classification scheme, and to provide the user with a more unified
and specified set of data elements. Each data type may not have an exact
counterpart in the STAR hardware, but it is usually easily simulated. Thé

scalar quantities are divided into six types. They are:

{a) Real - B4.-hit floating point
(b) Short Real - 32-bit floating point
(c) Integer - 48-bit integer

(d) Short Integer - 24-bit integer

(e) Logical - single bit

(f) Character - 8-bit byte

The integer quantities are just floating point numbers with zero exponents.
Vector data types in SL/1 are defined as fixed length one-dimensional arrays
consisting of elements of a specified scalar type. Present vector types include:
(g) Real vector
(h) Short real vector
(i) Integer vector
(j) Short integer vector
(k) Logical vector
Although the hardware is also able to deal with sparse vectors, they are not
included in the first version of SL/}. In the interest of simplicity, sparse

vectors will not be considered until the first language extension.

-5-

In contrast to vectors, strings in SL/1 are defined to be execution time
variable sequences of a specified scalar type. Present string data types
include only:

(2) Character string

Vectors and strings may be declared with the CONTROLLED attribute in
which case storage can be allocated and freed at run time.

The set of operators available in the language is considerable. It
essentially includes most of those which the hardware can deal with directly
plus whatever minimal extensions were necessary to handle the new data types.
One approach to the syntax is to define a single symbol for each operator as
has been done in APL [4]. However, the restriction imposed by available char-
acter sets makes this impractical. Where no obvious symbol exists, dyadic
SL/1 operators consist of a meaningful sequence of letters with a period as
prefix and suffix, as in PORTRAMN, and monadic and triadic operators are written
as function calls. For example, the polynomial evaluation written in FORTRAN
above is written in SL/1 as:

VALUE :=A .EVL. X ;
where, as before, VALUE is the vector of results, A is the vector of coefficients,
and X is the vector of argument values. An extensive list of the vector operators
is included in Appendix 2.

A11 declarations in SL/1 are explicit and are similar to the standard

Algol-1ike format; e.q.,
REAL VECTOR ({1..10] A;
/* Declaration of a vector with ten real elements with
subscript range from 1 to 10*/ '
CHARACTER STRING ([100] B;
/* Declaration of a character string with a maximum length

of one hundred characters */

-6-

CONTROLLED REAL VECTOR [1001..11000] C;
/* Declaration of a vector with 10,000 real elements for
which no storage is reserved */

Two aspects of the language of particular interest are the referencing
of vectors and strings, and the syntax of vector and string constants. A
single element of a vector or string is referenced merely by specifying the
required index in the normal way; e.g., A[5] := 1; B[2] := 'C';. The STAR-100
hardware has the useful facility of permitting a reference to a vector or
string to be offset, so that a given instruction may begin processing a vector
or string at some point other than its beginning. In addition, the number of
elements to be processed may be set as a length. This capability is used in
SL/1 to allow subvectors and substrings to be specified as a first element,
last element pair, or a first element, length pair. For example, to reference
elements 12 through 16 inclusive of a vector V, the syntax is V[12..16] or
V[12!5]. Both notations are provided because of their frequent occurrence in
the mathematical statement of algorithms. A similar substring notation is
used for strings.

Vector constants in SL/1 are element sequences which can be written out
in full. For example, \1,2,3,4\ is a four element vector constant. String
constants are treated exactly as they are in SNOBOL. More complex constant
vectors and strings can be created using the normal operators of the language,

such as replication and concatenation.

Data Structures

The only data structure provided by SL/1 is the array with the restriction
that each element can only be a vector or string. The purpose of this restric-

tion is to ensure that the user structures information as vectors rather than

declaring arrays of scalars and attempt to use them.as one would in a tradi-
tional programming language. This requirement forces the handling of linear
sequences of data in a more efficient manner.

A one-dimensional érray of vectors or "vector array" is similar in
nature to a matrix. The problem of providing a matrix or any multidimensional
data structure is the inherent symmetry of the indices. For example, the user
tends to regard referencing rows and columns of a matrix as equivalent. If
a matrix is stored rowwise on the STAR-100, then any operations on the rows
can use the machine's vector processing capability directly. However, column
operations are faced with tremendous overhead since the elements of a column
do not occupy sequential storage locations. Any programming language which
provides a multidimensional array capability with scalar elements must also
provide facilities for user control over how the array is stored, and warn the
user when his references to the array are inefficient.

The vector array avoids these problems. It is the user's respons%bi1ity
to interpret the vectors in the array as he wishes. For example, if each
element of a one-dimensional array has been used to store a row of a matrix,
then row operations are easily programmed and efficiently implemented. However,
to access a column, the user must explicitly program the element by element
reference pattern and the associated inefficiency is clear.

A common occurrence in scientific programming is the triangular system,
and it is usually left to the programmer's ingenuity to ensure that it is
efficiently stored. Since the STAR-100 will be used primarily for scientific
computing, SL/1 allows vector arrays to be declared-such that the lengths of
the element vectors form an arithmetic progression. By making both the length

of the first vector and the increment one, a triangular system can be stored.

The declaration of a vector array in which all the element vectors are
of the same length consists of declaration information for the element vectors,
followed by the word ARRAY followed by the array dimensional information con-
tained in parenthesis; e:g.,

REAL VECTOR [101..300] ARRAY (1..10) X;
/* X consists of ten vectors, each of which is two hundred
elements long. */
REAL VECTOR [51..100] ARRAY (1..20, 1..10) VY;
/* Y consists of a 20x10 array, each element of which is
a vector with 50 elements. */

The entire vector which is the ith element of X may be referenced using
the notation X(i). The jth element of that particular vector may be referenced
by writing X(i)[j]. Similarly, the vector which is the i,j element of Y may
be referenced as Y(i,j).

A triangular system is declared similarly, but the first two parameters
within the brackets define only the first element vector. A third parameter
is used to specify the length difference between adjacent element vectors; e.g.,

REAL VECTOR [1..1 BY 1] ARRAY (1..10) VY;
/* Y is a triangular system consisting of ten vectors,
the first of length one, and the i+15t vector one element

th Thus, for Y, the ith element vector

longer than the i
is of 1engtﬁ i.x/
If the first vector length is greater than one, a negative difference may
be specified indicating decreasing vector lengths.
Statements

In an SL/1 assignment statement, the right hand side may produce a scalar,

string, or vector value. If a sca1ar'or string is the result, assignment takes

place in the normal way. However, when the right hahd side yeilds a vector,
the semantics of the operator are more complex because of unique features of
the STAR-100 vector hardware.

Many of the STAR vector instructions allow storage of the result vector
to be controlled by a bit vector. If a bit vector is used, then the ith
result element is stored if the ith bit is one; otherwise, it is discarded.
The hardware also allows the opposite operation; i.e., store on zero, discard
on ones.

This feature of vector assignment essentially makes the assignment operator
triadic. In SL/1, the result variable and bit vector are both wfitten on the
left hand side of the assignment operator. They are separated by a comma and

surrounded by parentheses; e.qg.,

(C,2) := A+B;

In this example, C is the result field and Z is the bit vector used to
control the store operations.

Most of the commonly occurring control statements are available in SL/1.
For example, the WHILE, REPEAT UNTIL, CASE, FOR, and IF statements are provided.
Compound statements are bracketed by language keywords wherever possible rather
than BEGIN and END. The recent practice of using a keyword speit backwards
(FI, ESAC, etc.) to delimit the end of a statement has not been followed since
the authors feel that this can be confusing. Instead, the word END is used
with a single letter suffix added to indicate the type of statement. For example,
the full form of the IF statement is: ’
IF <Boolean Eipression> THEN <Statement List>

ELSE <Statement List> ENDI

-10-

CONCLUSION

At this writing, the design of SL/1 is in the final stages of refinement.
Potential STAR users have been actively involved in the design process by
programming algorithms in the language, and by giving feedback on language

constructs.

Three typical SL/1 program segments are included in Appendix 1 as examples.

ACKNOWLEDGMENT

Several people have contributed to the refinements of the design of SL/1.
The authors would 1ike to express their appreciation in particular to Edmond
H. Senn and Rudeen S. Smith of NASA's Langley Research Center, and to Michael

Donegan and Stuart Katzke of the College of William and Mary.

REFERENCES

1. Schwartz, J.: "On Programming: An Interim Report On The SETL Project,"
Computer Science Department, Courant Institute of Mathematical Sciences,

New York University, 1973.

2. Basili, V. R. and Turner, A. J.: "SIMPL T: A Structured Programming
Language," Computer Note - CN14, Computer Science Center, University

of Maryland, 1974.

3. Basili, V. R.: "The SIMPL Family of Programming Languages and Compilers,"
Technical Report - TR305, Computer Science Center, University of

Maryland, 1974.

4, Iverson, K. E.: "A Programming'Language," John Wiley and Sons, Inc., 1962.

-11-

(b)

/*

REAL
REAL
REAL
/*
FOR

ENDF

/*

REAL
REAL
/¥
X[1]
FOR

ENDF;

APPENDIX 1

This program segment forms the product of two matrices by repeated
column multiplfcations rather than using inner products. The vector
array A is used to store the columns of a 5 x 3 matrix, B holds the
columns of a 3 x 4 matrix and C will be used to hold columns of
the product. */
VECTOR [1..5] ARRAY (1..3) A;
VECTOR [1..3] ARRAY (1..4) B;
VECTOR [1..5] ARRAY (1..4) C;
Assume A and B are initialized. */
J FROM 1 70 3 DO
C(J) := 0 ;
FOR I FROM 1 TO 3 DO

C(J) := C(J) + A(I)*B(J)[1] ;
ENDF;

This program segment solves the system AX = B where A 1is lower
triangular. The vector array A holds the rows of a lower triangular
matrix, while the vectors X and B are column vectors. */

VECTOR [1..1 by 1] ARRAY (1..100) A;

VECTOR [1..100] X,B;

Assume A and B are initialized */

:= B[11/A(1)[1];

I FROM 2 TO 100 DO

X[I] :=(B{1] - (X[1!I-1] .DOT. A(I)[1:I-11))/A(I)[I];

-12-

, %

REAL
REAL
REAL
FOR

ENDF;
FOR

ENDF;

X2 bz
XN by
o L —d Y -

This piece of code solves a unit lower triangular system LX = B as
shown in the diagram. The vector array L contains the N column
vectors of the matrix and each vector is of length BETA. The solution
is formed in the vector B. */

VECTOR [BETA] ARRAY (N) L;

VECTOR [N] B;

VECTOR [BETA] T;

J FROM 1 TO N-BETA DO

T :=B[J] * L(J)[2..BETA+1] ;

B[J=1..J+BETA] := B[J=1..J+BETA] - T ;

J FROM N-BETA+1 TO N-1 DO
T[1..N-J] :

[}

B[J] * L(J)[2..N-0+1] ;
BLJ+1..N] :

"

B{J+1..N] - T[1..N-J] ;

-13-

APPENDIX 2

Partial list of SL/1 vector operators:

FLOOR () Element by element floor of a vector.
CEIL() Element by element ceiling of a vector.
SQRT() Element by element square root.

REV() Reverse a vector.

SUM() Sum of a vector's elements.

PRD() Product of a vector's elements.

MAX() Maximum element of a vector.

MIN() Minimum element of a vector.

< 3

Element by element relational operators.

” The result is a bit vector.

> J

+ Element by element addition.

- Element by element subtraction.

* Element by element multiplication.
/ Element by element division.

*x Element by element exponentiation.
.DIV. Element by element integer division.
.MOD. Element by element modulus.

.CON. Concatenate two vectors.

.REP. ' Repeat a vector.

.DOT. Vector ddt product.

.EVL. Evatuate a polynomial

.AVG. Eiement by Element average.

.CMP. Compress a vector according to a Hit vector.

